منابع مشابه
Two-sided Essential Nilpotence
An ideal I of a ring A is essentially nilpotent if I contains a nilpotent ideal N of A such that J 91N # 0 whenever J is a nonzero ideal of A contained in I. We show that each ring A has a unique largest essentially nilpotent ideal EN(A). We study the properties of EN(A) and, in particular, we investigate how this ideal behaves with respect to related rings.
متن کاملHomotopical Nilpotence of S3
In [l] Berstein and Ganea define the nilpotence of an ü-space to be the least integer » such that the »-commutator is nullhomotopic. We prove that S3 with the usual multiplication is 4 nilpotent. Let X be an ii-space. The 2-commutator c2: XXX—>X is defined by c2(x, y) =xyx~1y~1 where the multiplication and inverses are given by the ü-space structure of X. The »-commutator cn: X"-+X is defined i...
متن کاملThe Nilpotence Height of P
The method of Walker and Wood is used to completely determine the nilpotence height of the elements P s t in the Steenrod algebra at the prime 2. In particular, it is shown that (P s t ) 2bs/tc+2 = 0 for all s ≥ 0, t ≥ 1. In addition, several interesting relations in A are developed in order to carry out the proof.
متن کاملFinite Vertex Algebras and Nilpotence
I show that simple finite vertex algebras are commutative, and that the Lie conformal algebra structure underlying a reduced (= without nilpotent elements) finite vertex algebra is nilpotent.
متن کاملNilpotence in the Steenrod Algebra
While all of the relations in the Steenrod algebra, A, can be deduced in principle from the Adem relations, in practice, it is extremely difficult to determine whether a given polynomial of elements in A is zero for all but the most elementary cases. In his original paper [Mi] Milnor states “It would be interesting to discover a complete set of relations between the given generators of A”. In p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebra universalis
سال: 2019
ISSN: 0002-5240,1420-8911
DOI: 10.1007/s00012-019-0632-2